Axial anomalies in hydrodynamics

Dam T. Son (INT, University of Washington)

Ref.: DTS, Piotr Surówka, arXiv:0906.5044

Plan of the talk

- Hydrodynamics as a low-energy effective theory
- Relativistic hydrodynamics
- Triangle anomaly: a new hydrodynamic effect

A low-energy effective theory

Consider a thermal system: $T \neq 0$

Dynamics at large distances $\ell\gg\lambda_{\rm mfp}$ governed by a simple effective theory:

Hydrodynamics

Relativistic hydrodynamics

Conservation laws: $\partial_{\mu}T^{\mu\nu} = 0$

$$\partial_{\mu}j^{\mu}=0$$

(if ∃ conserved charge)

Constitutive equations: local thermal equilibrium

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}$$
$$j^{\mu} = nu^{\mu}$$

Total: 5 equations, 5 unknowns

Relativistic hydrodynamics

Conservation laws: $\partial_{\mu}T^{\mu\nu} = 0$

$$\partial_{\mu}j^{\mu}=0$$

 $\partial_{\mu}j^{\mu}=0$ (if \exists conserved charge)

Constitutive equations: local thermal equilibrium

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}$$
$$j^{\mu} = nu^{\mu} + \nu^{\mu}$$

Total: 5 equations, 5 unknowns

Dissipative terms

$$\tau^{ij} = -\eta(\partial^i u^j + \partial^j u^i - \frac{2}{3}\delta^{ij}\vec{\nabla}\cdot\vec{u}) - \zeta\delta^{ij}\vec{\nabla}\cdot\vec{u} \qquad \nu^i = -\sigma T\partial^i\left(\frac{\mu}{T}\right)$$

Relativistic hydrodynamics

Conservation laws: $\partial_{\mu}T^{\mu\nu} = 0$

$$\partial_{\mu}j^{\mu}=0$$

 $\partial_{\mu} j^{\mu} = 0$ (if \exists conserved charge)

Constitutive equations: local thermal equilibrium

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}$$
$$j^{\mu} = nu^{\mu} + \nu^{\mu}$$

Total: 5 equations, 5 unknowns

Dissipative terms

$$\tau^{ij} = -\eta(\partial^i u^j + \partial^j u^i - \frac{2}{3}\delta^{ij}\vec{\nabla}\cdot\vec{u}) - \zeta\delta^{ij}\vec{\nabla}\cdot\vec{u} \qquad \qquad \nu^i = -\sigma T\partial^i\left(\frac{\mu}{T}\right)$$
 shear viscosity bulk viscosity conductivity (diffusion)

Parity-odd effects?

- QFT: may have chiral fermions
 - example: QCD with massless quarks
- Parity invariance does not forbid

$$j^{5\mu}=n^5u^\mu+\xi(T,\mu)\omega^\mu$$

$$\omega^\mu=\frac{1}{2}\epsilon^{\mu\nu\alpha\beta}u_\nu\partial_\alpha u_\beta \qquad \text{vorticity}$$

 The same order in derivatives as dissipative terms (viscosity, diffusion)

in 2+1D:
$$\tau_{\mu\nu} = \cdots + \epsilon_{\mu\alpha\beta}u_{\alpha}u_{\nu\beta} + (\mu \leftrightarrow \nu)$$
 Hall viscosity

Landau-Lifshitz frame

We can also have correction to the stress-energy tensor

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \xi'(u^{\mu}\omega^{\nu} + \omega^{\mu}u^{\nu})$$

• Can be eliminated by redefinition of u^{μ}

$$u^{\mu} \rightarrow u^{\mu} - \frac{\xi'}{\epsilon + P} \omega^{\mu}$$

Only a linear combination $\xi - \frac{n}{\epsilon + P} \xi'$ has physical meaning

Let us set
$$\xi' = 0$$

New effect: chiral separation

- Rotating piece of quark matter
- Initially only vector charge density $\neq 0$
- Rotation: lead to j⁵: chiral charge density develops
- Can be thought of as chiral separation: left- and right-handed quarks move differently in rotation fluid
- Similar effect in nonrelativistic fluids?

Can chiral separation occur in rigid rotation?

- If a chiral molecule rotates with respect to the liquid, it will moves
- In rigid rotation, molecules rotate with liquid
- \bullet \Rightarrow no current in rigid rotation.

Relativistic theories are different

- There can be current ~ vorticity
- It is related to triangle anomalies

$$\partial_{\mu} j^{5\mu} = \#E \cdot B$$

but the effect is there even in the absence of external field

• The kinetic coefficient ξ is determined completely by anomalies and equation of state

Forbidden by Landau?

- Terms with epsilon tensor do not appear in the standard Landau-Lifshitz treatment of hydrodynamics
- Was it deliberate?

Forbidden by Landau?

- Terms with epsilon tensor do not appear in the standard Landau-Lifshitz treatment of hydrodynamics
- Was it deliberate?

"Landau said..."

Forbidden by Landau?

- Terms with epsilon tensor do not appear in the standard Landau-Lifshitz treatment of hydrodynamics
- Was it deliberate?

"Landau said..."

Possible reason: 2nd law of thermodynamics

$$\partial_{\mu}[(\ \epsilon + P\)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$

$$\partial_{\mu}(nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$\partial_{\mu}[(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$

$$\partial_{\mu}(nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$
$$-\frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$

$$+ \frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$

$$+ \frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$\partial_{\mu} (su^{\mu}) = \frac{\mu}{T} \partial_{\mu}\nu^{\mu} + \frac{1}{T} \quad u_{\nu} \partial_{\mu}\tau^{\mu\nu}$$

Standard textbook manipulations (single U(1) charge)

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$

$$+ \frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

 $\partial_{\mu}(su^{\mu} - \frac{\mu}{T}\nu^{\mu}) = \frac{\mu}{T}\partial_{\mu}\nu^{\mu} + \frac{1}{T} u_{\nu}\partial_{\mu}\tau^{\mu\nu}$

$$-\frac{u_{\nu}}{T} \times \partial_{\mu} [(Ts + \mu n)u^{\mu}u^{\nu}] + \partial^{\nu}P + \partial_{\mu}\tau^{\mu\nu} = 0$$

$$+ \frac{\mu}{T} \times \partial_{\mu} (nu^{\mu}) + \partial_{\mu}\nu^{\mu} = 0$$

$$\partial_{\mu} (su^{\mu} - \frac{\mu}{T}\nu^{\mu}) = -\partial_{\mu}\frac{\mu}{T} \quad \nu^{\mu} - \frac{1}{T}\partial_{\mu}u_{\nu} \quad \tau^{\mu\nu}$$

$$\begin{split} &-\frac{u_{\nu}}{T}\times\partial_{\mu}[(Ts+\mu n)u^{\mu}u^{\nu}]+\partial^{\nu}P+\partial_{\mu}\tau^{\mu\nu}=0\\ &+\\ &-\frac{\mu}{T}\times\partial_{\mu}(nu^{\mu})+\partial_{\mu}\nu^{\mu}=0\\ &\partial_{\mu}(su^{\mu}-\frac{\mu}{T}\nu^{\mu})=-\partial_{\mu}\frac{\mu}{T}\quad \nu^{\mu}-\frac{1}{T}\partial_{\mu}u_{\nu}\quad \tau^{\mu\nu}\\ &\uparrow\\ &\text{entropy current }s^{\mu} \end{split}$$

Standard textbook manipulations (single U(1) charge)

$$\begin{split} &-\frac{u_{\nu}}{T}\times\partial_{\mu}[(Ts+\mu n)u^{\mu}u^{\nu}]+\partial^{\nu}P+\partial_{\mu}\tau^{\mu\nu}=0\\ &+\frac{\mu}{-T}\times\partial_{\mu}(nu^{\mu})+\partial_{\mu}\nu^{\mu}=0\\ &-\partial_{\mu}(su^{\mu}-\frac{\mu}{T}\nu^{\mu})=-\partial_{\mu}\frac{\mu}{T}\quad\nu^{\mu}-\frac{1}{T}\partial_{\mu}u_{\nu}\quad\tau^{\mu\nu}\\ &-\frac{\uparrow}{T}\cos^{\mu}\cos^{\mu}(u) -\frac{1}{T}\partial_{\mu}u_{\nu} &-\frac{1}{T}\partial_{\mu}u_{\nu} &-\frac{$$

Positivity of entropy production constrains the dissipation terms: only three kinetic coefficients η , ζ , and σ (right hand side positive-definite)

Is there a place for a new kinetic coefficient?

$$\partial_{\mu} \left(s u^{\mu} - \frac{\mu}{T} \nu^{\mu} \right) = -\frac{1}{T} \tau^{\mu\nu} \partial_{\mu} u_{\nu} - \nu^{\mu} \partial_{\mu} \left(\frac{\mu}{T} \right)$$

Can we add to the current: $\nu^{\mu} = \cdots + \xi \omega^{\mu}$?

Problem: Extra term in current would lead to

$$\partial_{\mu}s^{\mu}=\cdots-\xi\omega^{\mu}\partial_{\mu}\left(rac{\mu}{T}
ight)$$
 not manifestly zero

This can have either sign, and can overwhelm other terms

Is there a place for a new kinetic coefficient?

$$\partial_{\mu} \left(s u^{\mu} - \frac{\mu}{T} \nu^{\mu} \right) = -\frac{1}{T} \tau^{\mu\nu} \partial_{\mu} u_{\nu} - \nu^{\mu} \partial_{\mu} \left(\frac{\mu}{T} \right)$$

Can we add to the current: $\nu^{\mu} = \cdots + \xi \omega^{\mu}$?

Problem: Extra term in current would lead to

$$\partial_{\mu}s^{\mu}=\cdots-\xi\omega^{\mu}\partial_{\mu}\left(rac{\mu}{T}
ight)$$
 not manifestly zero

This can have either sign, and can overwhelm other terms

Forbidden by 2nd law of thermodynamics?

Holography

The first indication that standard hydrodynamic equations are not complete comes from considering

rotating 3-sphere of N=4 SYM plasma ↔ rotating BH

If the sphere is large: hydrodynamics should work no shear flow: corrections ~ 1/R^2

Instead: corrections ~ 1/R Bhattacharyya, Lahiri, Loganayagam, Minwalla

Holography (II)

Erdmenger et al. arXiv:0809.2488

Banerjee et al. arXiv:0809.2596

considered N=4 super Yang Mills at strong coupling finite T and μ

should be described by a hydrodynamic theory

discovered that there is a current ~ vorticity

Found the kinetic coefficient $\xi(T,\mu)$

$$\xi = \frac{N^2}{4\sqrt{3}\pi^2}\mu^2 \left(\sqrt{1 + \frac{2}{3}\frac{\mu^2}{\pi^2 T^2}} + 1\right) \left(3\sqrt{1 + \frac{2}{3}\frac{\mu^2}{\pi^2 T^2}} - 1\right)^{-1}$$

Back to hydrodynamics

- How can the argument based on 2nd law of thermodynamics fail?
 - 2nd law not valid? unlikely...
 - Maybe we were not careful enough?

$$\partial_{\mu}s^{\mu} = \dots - \xi\omega^{\mu}\partial_{\mu}\left(\frac{\mu}{T}\right)$$

Can this be a total derivative?

If yes, then all we need to to is to modify s^µ

$$s^{\mu} \rightarrow s^{\mu} + D(T, \mu)\omega^{\mu}$$

so our task is to find D so that

$$\partial_{\mu}[D(T,\mu)\omega^{\mu}] = \xi(T,\mu)\omega^{\mu}\partial_{\mu}\left(\frac{\mu}{T}\right)$$

for all solutions to hydrodynamic equations

This is possible for a special class of $\xi(T,\mu)$ (expressible in terms of a function of 1 variable: μ/T

but we are still not able to relate ξ to anomalies

Turning on external fields

- To see where anomalies enter, we turn on external background U(1) field A_{μ}
- Now the energy-momentum and charge are not conserved

$$\partial_{\mu} T^{\mu\nu} = F^{\nu\lambda} j_{\lambda}$$

$$\partial_{\mu} j^{\mu} = -\frac{C}{8} \epsilon^{\mu\nu\lambda\rho} F^{\mu\nu} F^{\lambda\rho}$$

 Power counting: A~1, F~O(p): right hand side has to be taken into account

Anomalous hydrodynamics

 These equations have to be supplemented by the constitutive relations:

$$T^{\mu
u}=(\epsilon+P)u^{\mu}u^{
u}+Pg^{\mu
u}$$
 +viscosities
$$j^{\mu}=nu^{\mu}+\xi\omega^{\mu}+\xi_BB^{\mu} \qquad B^{\mu}=rac{1}{2}\epsilon^{\mu
u lpha eta}u_{
u}F_{lpha eta} \ + ext{diffusion+Ohmic current}$$

• Demand that there exist an entropy current with positive derivative: $\partial_{\mu} s_{\mu} \ge 0$

Entropy production

• Positivity of entropy production completely fixes ξ and ξ_{B}

$$\xi = C \left(\mu^2 - \frac{2}{3} \frac{n\mu^3}{\epsilon + P} \right)$$

anomaly coefficient

$$\xi_B = C \left(\mu - \frac{1}{2} \frac{n\mu^2}{\epsilon + P} \right) \qquad j^\mu = \dots + \xi \omega^\mu + \xi_B B^\mu$$

These expressions have been checked for N=4 SYM

Multiple charges

$$j^{a\mu} = \dots + \#C^{abc}\mu^b\mu^c\omega^\mu + \#C^{abc}\mu^bB^{c\mu}$$

Observable effect on heavy-ion collsions?

Chiral magnetic effect

- Large axial chemical potential μ₅ for some reason
- Leads to a vector current: charge separation
- π^+ and π^- would have anticorrelation in momenta
- Some experimental signal?
- Can be explained by j~ μ₅B Kharzeev, Fukushima, Warringa, McLerran...
- Chiral rotation effect: j~ μ₅ω

From kinetic theory?

- The anomalous hydrodynamics current also exists in weakly coupled theories
- Should be derivable from kinetic theory, for example from Landau's Fermi liquid theories
- which kind of corrections to Landau's Fermi liquid theory?

Conclusions

- Anomalies affect hydrodynamic behavior of relativistic fluids: vorticity →current
- coefficient completely determined by anomalies and equation of state
- First seen in holographic models, but can be found by reconciling anomalies and 2nd law
 - hydrodynamic 't Hooft anomalies matching
- Further studies of experimental significance needed
- Anomalies in Landau's Fermi liquid theory?

Fluid-gravity correspondence

- Long-distance dynamics of black-brane horizons (in AdS) are described by hydrodynamic equations
 - finite-T field theory ↔ AdS black holes

described by hydrodynamics

- Charged black branes: hydrodynamics with conserved charges
- Anomalies: Chern-Simons term in 5D action of gauge fields

A holographic fluid

$$S = \frac{1}{8\pi G} \int d^5x \sqrt{-g} \left(R - 12 - \frac{1}{4} F_{AB}^2 + \frac{4\kappa}{3} \epsilon^{LABCD} A_L F_{AB} F_{CD} \right)$$
 encodes anomalies

Black brane solution (Eddington coordinates)

$$ds^{2} = 2dvdr - r^{2}f(r, m, q)dv^{2} + r^{2}d\vec{x}^{2} \qquad f(m, q, r) = 1 - \frac{m^{4}}{r^{4}} + \frac{q^{2}}{r^{6}}$$
$$A_{0}(r) = \#\frac{q}{r^{2}}$$

Boosted black brane: also a solution

$$ds^{2} = -2u_{\mu}dx^{\mu}dr + r^{2}(P_{\mu\nu} - fu_{\mu}u_{\nu})dx^{\mu}dx^{\nu}$$

$$A_{\mu}(r) = -u_{\mu}\#\frac{q}{r^{2}}$$

Promoting parameters into variables

$$u_{\mu} o u_{\mu}(x)$$
 $m o m(x)$ $q o q(x)$
$$g_{\mu\nu} = g^{(0)}_{\mu\nu}(m,q,u) + g^1_{\mu\nu}$$
 proportional to ∇ m, ∇ q, ∇ u

Solve for g¹ perturbatively in derivaties

Condition: no singularity outside the horizon

In picture

In picture

$$\Box A^{\mu} \sim \epsilon^{\mu\nu\lambda\alpha\beta} F_{\nu\lambda} F_{\alpha\beta}$$

- This lead to correction to the gauge field
 - $\delta A_i \sim \epsilon_{ijk} \partial_j u_k$
- Current is read out from asymptotics of A near the boundary: $j \sim \omega$